Electronics for a Position & Time Sensing Large Area Photo-Detector System

Eric Oberla
University of Chicago

ANT'11

With help from:

Hervé Grabas (U.Chicago & CEA Saclay)

Henry Frisch (U.Chicago)

Mircea Bogdan (U.Chicago)

Gary Varner (U.Hawai'i)

Kurtis Nishimura (UHawai'i)

Jean-François Genat (IN2P3)

Large-Area Picosecond Photo-Detectors (LAPPD) Collaboration

Outline

- LAPPD Anode: Transmission line readout
- Front-end: Gigahertz waveform digitizing ASICs
- **System**: DAQ development

The LAPPD project

- ration
- Development of large-area, relatively inexpensive Micro-Channel Plate (MCP) photo-detectors
 - 8" x 8" phototubes = 'tile' (large active area)
 - Gain $>= 10^6$ with two MCP plates
 - Transmission line readout no pins!
 - Fast pulses + low TTS ~30ps

Transmission Line Anode

- 30 microstrip transmission lines ($Z_0 = 50\Omega$)
 - 0.108" thick glass substrate, 0.182" strip width
 - quasi-TEM mode (crosstalk)

Microstrip transmission lines consist of a strip conductor and a ground metal plane separated by a dielectric medium.

Microwaves & RF

Transmission Line Anode

After final amplification, the shower of electrons is accelerated towards the anode, inducing EM waves that propagate in both directions along transmission line.

Transmission Line Anode

After final amplification, the shower of electrons is accelerated towards the anode, inducing EM waves that propagate in both directions along transmission line.

- Location of event (x,y) determined by the time difference of signal on two ends (x) and the charge-centroid of adjacent strips (y)
 - Position resolution <--> time resolution $[\sigma_x = \sigma_t * v_{prop}]$

100 ps ~ 1.5 cm 10 ps ~1.5 mm ...etc.

- on
- Custom waveform sampling ASICs readout both ends of microstrip lines
 - → High channel density
 - → Compact electronics integration with detector

- → Low cost per channel
- → Preserve timing information

Genat, et al. NIM A**607 (2009) 387-393**.

Waveform Sampling (WFS) ASICs

WFS ASICS = "analog down conversion" (GHz sampling → 10-100 MHz readout)

- -full waveform reduces impact of noise/poorly formed pulses
- -data processing options

→ Useful for most "triggered" 'event' applications

9

Switched Capacitor Array Sampling

Write pointer passed along array - generates 'sampling window' (~5-10 switches closed at once):

Tiny charge: 1mV ~ 100e⁻

Timing generation with a delay locked loop (DLL):

To switched capacitor array – sample & hold

Waveform Sampling ASICs

· Already in use in many experiments...

Easy access to Waveform sampling

	WFS ASIC	Commercial
Sampling speed	0.1-15 GSa/s	3 GSa/s
Bits/ENOBs	16/9-13+	8/7.4
Power/Chan.	<= 0.05W	Few W
Cost/Chan.	~\$10s (vol)	>>\$100

PSEC-4 ASIC

Designed to sample & digitize fast pulses (MCPs):

- Sampling rate capability > 10GSa/s
- Analog bandwidth > 1
 GHz (challenge!)
- Relatively short buffer size
- Medium event-rate capability (up to 100 KHz)

	SPECIFICATION
Sampling Rate	2.5-15 GSa/s
# Channels	6 (or 2)
Sampling Depth	256 (or 768) points
Sampling Window	Depth*(Sampling Rate)-1
Input Noise	<1 mV RMS
Analog Bandwidth	1.5 GHz
ADC conversion	Up to 12 bit @ 2GHz
Dynamic Range	0.1-1.1 V
Latency	2 μs (min) – 16 μs (max)
Internal Trigger	yes

PSEC-4 ASIC

• 6-channel "oscilloscope on a chip" (1.6 GHz,10-15 GS/s)

Evaluation board uses
 USB 2.0 interface + PC
 data acquisition software

PSEC-4 Performance

- Low noise <1 mV</p>
- ~1V dynamic range with excellent linearity
- Analog bandwidth of 1.6 GHz
- Sampling rates up to 15 GSa/s

Frequency Response

15

PSEC-4 Performance

Digitized Waveforms

Input: 800MHz, 300 mV_{pp} sine

Sampling rate: 10 GSa/s

0.15 0.05 -0.05 -0.15 -0.2 2 3 4 5 6 7 8 Time [ns]

Sampling rate: 13.3 GSa/s

- Only simple pedestal correction to data
- As the sampling rate-to-input frequency ratio decreases, the need for time-base calibration becomes more apparent (depending on necessary timing resolution)

Additional ASIC options...

- PSEC-4 intended for fast sampling & precision timing:
 - recording window of 25-50 ns (256 points per waveform)
- Some applications may require deeper record lengths and/or more complicated triggers – alternative waveform digitizing ASICs:

Ice Radio Sampler (IRS) / Buffered LABRADOR 3 (BLAB3) Specifications

32768	samples/chan (8-32us trig latency)
8	channels/IRS ASIC
8	Trigger channels
~9	bits resolution (12-bits logging)
64	samples convert window (~16-64ns)
1-4	GSa/s
1	word (RAM) chan, sample readout
16	us to read all samples
100's	Hz sustained readout (multibuffer)

G. Varner U.Hawaii

LAPPD Collaboration

DAQ system

tion

Targeted to Super Module readout

LAPPD Collaboration

DAQ system

on

Backside of Super Module:

DAQ system

LAPPD Collaboration

DAQ system

- Design in progress
 - PSEC-4 is baseline WFS ASIC
- Modular may equip any array of LAPPD 30microstrip tiles
- Software/firmware development
- System will send event time, amplitude, goodness of fit, trigger location, etc.. to PC.
 - with option to send entire digitized waveform per event

Summary

- LAPPD readout using 1.5 GHz transmission line anode
 - Low # of readout channels w/o sacrificing position resolution (σ_t ≤ 100 ps will be achieved \rightarrow ≤1 cm)
- Front-end readout using waveform sampling ASICs
 - PSEC-4 baseline ASIC (>10GS/s) with deeper sampling options available--pipelined operation
 - Keeping full waveform= potential for better reconstruction?
- DAQ system will be online in a few months
 - w/ functional 8" MCP → beam test will be priority.

backup

Transmission Line-MCP readout with PSEC-3

2" x 2" Burle Planacon w/ custom PCB T-Line board

PSEC-3 sampling @ 10 Gsa/s

Transmission Line-MCP readout with PSEC-3

Wilkinson ADC – easy to integrate onchip

